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On the shape of a deformed eddy with varying Coriolis force 
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I.N.F.N. Istituto di Fisica ‘G.  Marconi’, UniversitA di Roma, Italy 

(Received 21 June 1976 and in revised form 24 July 1978) 

We present a simple model of a steady barotropic eddy superimposed on a current, 
with varying Coriolis force, to study the structure of a nonlinear deformed eddy. We 
also develop the linearized time-dependent formulation of the problem. The resulting 
solutions are stable perturbations, with scales smaller than the eddy. 

1. Introduction 
The lively interest aroused by the recent MODE experiments has emphasized some 

questions concerning mid-oceanic eddies. The origin, the energy balance and the 
stability of baroclinic eddies, in a region large enough for Coriolis force not to be 
constant, have been studied by Robinson (1975), McWilliams (1976), Huppert & 
Bryan (1976). Some possible mechanisms have been proposed and studied with a 
view to finding a reasonable model for the growth of these eddies. 

We shall present a simple model, that of a barotropic eddy superimposed on a 
current, with varying Coriolis force, $2,  to study the structure of a nonlinear eddy. 
We have used particular care in handling the nonlinear terms in order to give a de- 
tailed description of the various effects. To our surprise the equation for the steady 
case, a complicated nonlinear equation, decouples into two linear equations, the 
former concerning the eddy, the second relating to the current. 

The problem of the effects of nonlinearity has previously interested some researchers. 
The interactions of various meteorological eddies have also been investigated by 
Friedlander (1975). In  this context bhe linearized equations found by Friedlander 
have some features in common with this work. Ingersoll (1973) has numerically 
studied a similar case for Jupiter’s atmosphere; Stern (1976) has used variational 
approaches to study the dimensions of oceanic vortices. Larichev & Reznic (1976) 
have also studied the relation between nonlinear eddies and mean flows. A recent 
study of a quasigeostrophic eddy (Flier1 1977) bears some relation with this note. 

Assuming that the strength of the current is smaller than the eddy strength, one 
can also develop the time-dependent formulation of the problem, in terms of the 
current strength, 5 3-4. The resulting solutions are stable perturbations with scales 
smaller than the eddy. Although further development looks interesting, the difficulty 
of the problem increases considerably. 

2. The steady case 
The steady nonlinear motion of an inviscid fluid is studied. The Coriolis force f(y)  

depends on the y co-ordinate, directed northward. The x co-ordinate is directed east- 
ward. The centre (0 ,O) is a point in a mid-oceanic region. 
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The aim is to see if an eddy can exist with a current. The Euler equation is used for 
a stream function $(x, y, t )  : 

The quantity J(A, B)  is the Jacobian determinant 
%A$ + J($, A$ + f ( Y ) )  = 0. (1)  

1 
r 

J(A,B) = axAa,B-a,Ba,A = - (B,AB,B-B,BB,A). 

Here and in the following we will alternatively use the polar co-ordinates (r ,O) 
and t,he Cartesian co-ordinates (x, y), in view of the dual nature of the problem, i.e. 
curvilinear and rectilinear, eddy and current. 

We will proceed by steps. We start with f = constant; then every $ ( r )  is a solution 
to the steady equation, 

if $(r)  is ‘fairly regular ’ : $ E G,. 
J($(r), A$@) +f) = 0 

This is no longer true iff = f(y): 

J($(r), A$(r) +f  (Y)) = f’(Y) a,$(r) 9 0, 

i.e. $ is no longer a solution. We can now assume, on heuristic grounds, that f = f (y) 
and 

This gives a current over an eddy, or a deformed eddy. One could also assume currents 
in different directions with no further difficulty. The Euler equation is thus: 

$ = $ ( r )  + &(!I). 

JW, A$ +fW) = a,$(r) [a”’(y) +f’(Y)l -a‘@) axA$(r) 
= cos 8 [a,$(arFt +f’) - a’a,,~$l = 0. (2) 

This equation has a solution if and only if 

(3) I “,$(r)l = “a,$(r)l, 
a”(y) +f’(Y) = Na’(y), 

where N is a constant. 
If we assume regularity at infinity, we have N = - K2. The eddy solutions are 

Hankel functions (Courant & Hilbert 1953); assuming regularity at  the origin, the 
solution is a Bessel function (Flied, 1977) 

$ = BJ,(Kr)+B, 0 < r < co. 

Its behaviour near the origin reminds us intuitively of a bell of radius R, N 4 / K ,  
where ar$ 9 0 for r < R,. At infinity it has an oscillatory behaviour. 

It should be noted that our basic assumption @ = $(r) + a(y) implies that the ener- 
gies of our system cannot be finite in the x, y plane. 

We can now discuss the current in the /3 plane or P-/3 plane approximation: 

f =fo+PY+rY2. 
The solution is 

a ( y )  = gs inKy+gcosKy--+9.  f (Y) 
K2 

The general solution is then (figure 1) 
f (Y) @ = AJ,(Kr) + Bsinh’y + C cos Ky -- + D .  K2 (4) 
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FIGURE 1. The case of a vortex with 
@ = 0*30J0(0.9 r )  - 0.05 cos (0.9 y) ,  f = const. 
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FIGURE 2. Experimental ‘elliptic’ vortices found by Cheney BE Richardson (1976). 
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FIGURE 3. Experimental ‘elliptic’ vortices found by Wiebe et al. (1976). 

The Coriolis force is compensated by a contribution 

to $. 
It is perhaps interesting to observe that for B = C = 0, (4) is the solution of the 

Rossby wave equation found by Longuet-Higgins (1964), combined with an eastward 
current which balances the westward phase propagation. 

Let us now discuss this solution on physical grounds. An interesting case of oceanic 
eddy has been studied by Cheney & Richardson (1976). It has been examined for a 
long period and its time decay has been computed (figure 2). The shape of this eddy 
is similar to the central part of our model (figure 1). The velocity profiles in the central 
part are also in reasonable agreement with our computed velocity field. In the work 
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FIGURE 4. Experimental 'elliptic' vortices found by De Maio & Trotti (1967). 

of Cheney & Richardson no realistic information about the external part of the eddy 
is available. Although there is no definitive evidence for an identification of this 
oceanic eddy with our J,(Kr) model, we feel that this hypothesis is reasonable. Other 
experimental profiles similar to that of figure 2 have been found by Wiebe (1976) 
(figure 3) and De Maio & Trotti (1967) (figure 4). A recent review is due to Lai & 
Richardson (1977). 

One might however wonder why only the central part could be detected experiment- 
ally. This could happen because a t  some distance the effect of J,(Kr) would be a 
secondary quantity in comparison with the current and any other external force. 
From another point of view, let us remark that for a = 0, the Rayleigh stability 
condition 

@ = - ( r V ) 2  > 0 

is not satisfied for every r (0 ,< r < 00). One could thus expect that this solution has 
a physical meaning in a central region % only. 

d 
dr 

3. Time-dependent variations 

variation 

Then 

Let us now extend the preceding analysis by allowing a rather small time-dependent 

%x, y, t )  = exp (wt )  d(x, y) + exp (w*t) d*(x, y). 

= #(r)  + a(y) + exp (wt )  d(x, y) + exp (w*t)  d*(x, y). 
(5) 

The quantity 9 is assumed to be rather small and it will be treated as a perturbation 
(Chandrasekar 1961; Davis 1976; Lalas 1975). One important aspect is the nature 
of o: if it  is a purely imaginary number, the effect of B(x, y, t )  remains stationary. 

I 1c. = 1c.h Y, t )  = 9(.) + 4 y )  + WG Y, t )  
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If on the contrary it is a complex or real number, then one can assume that 9 can 
increase or decrease with time. 

Let us remember that the experimental data of Cheney & Richardson (1976) give 
an average decay time of N 2 years €or oceanic eddies of 5 0 s  100 km in radius: a 
particularly stable system. 

We firsb note that the eddy $(r )  by itself does not satisfy the Rayleigh stability 
condition 

d 
dr 

CD = - (rV)2 = 2K[J~(Kr)-J1(Kr)J2(Kr)] > 0 

for every r (0 < r < co) but only for r inside some central region V whose radius is 
typically of order R,. As a increases one would intuitively expect a similar result for 
a 'deformed' central region V obtained by continuous deformation of the circle 
r N Ro. 

We thus study perturbations localized on V i.e. perturbations 9 ( x ,  y, t )  such h a t  
9 = 0 on the boundary a%. These are not the most general kind of perturbations but 
in this case some interesting results are available. 

The Euler equation for the perturbations is 
0 exp ( w t )  Ad + w* exp (w* t )  Ad* + J{(a  + $), A ( a  + $) + f} + exp (wt )  {J($ ,  Ad) 

i- J (a ,  Ad) + J ( d ,  A$) + J ( d ,  A a )  + J ( d , f ) }  + exp (w* t )  { J ( $ ,  Ad*) 
+ J (a ,  Ad*) + J(d* ,  A$) + J(d*, A @ )  + J ( d * , f ) )  = O(d2)  E 0 

disregarding the quadratic d terms. Since $( r )  and a ( y )  have been fixed by the steady 
case, we now have a linearized equation for w and d .  

The part, which is proportional to exp (wt )  is 

1 1 
r r 

Computational difficulties arise and we need some kind of approximation. If the 
velocities of the circular eddy are much larger than the current, we can introduce a 
small parameter E N a/$ and study the equation of motion by a series expansion 
in 6 .  Owing to the smallness of the ,8-effect and of a throughout the region we want to 
study, we can obtain meaningful results by studying the equation (6) up to first order 
in 6 or p. 

= wAd+-a ,$a ,Ad- -a ,A$a ,d -a ' (K2+A)d  = 0. (6) 

We then can write: 
a * €a, 
w = > w O + e w l + . . .  = x E k W k ,  

k 

f *f0+/3Y, 
d * d o + d l +  ... = xCkdk ,  

k 
where wo, do are solutions when a = e = /3= 0. 

Using the theory of perturbations, the equation of motion is, up to first order in E ,  

I 
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In  the first order calculation, the eddy is the only important quantity: we use the 
first equation in (7).  This is equivalent to taking e = 0, f = f,. The second order treat- 
ment (e =/= 0, a + 0 )  is in $4. 

The ‘memory) of the current is now in the explicit shape of the eddy only. We call 

wo = fir + iQ,, do = exp (im0) [ ( r )  (8) 
(this is not a limitation because the equations are linear); since a,.$ $. 0, from (7) we 
have 

r r 
(1 +ma,$ Szi- i - 

mar$ 
(9) 

We impose regularity at  the origin and do = 0 at a%?, r = R,; i.e. we study perturba- 
tions with scales smaller than the eddy. 

We now show directly that this restricted class of perturbations is stable: Q, = 0. 
Let us assume that 0, =+ 0. We can then multiply the preceding equation by the 

finite quantity 

thus obtaining 

We now integrate in space: 

= -/ rQRo 
d x d y ( V d , * )  x (Vd,) < 0. 

If the kinetic energy of our bounded system is finite, the left-hand integral is a nega- 
tive real quantity. This implies 

This contradicts our hypothesis Qr $. 0. Thus R, = 0 and the system is stable. This 
is a rigorous result in a central region, i.e. r < R,, but it could also be true every- 
where. 

The same result holds if the int.egral is performed over any region bounded by a 
do = 0 line, as long as a,.$ + 0 inside the region. 

The equation is then 
(1  + rQi/mi3,$) Ad,, = - K2d,. (10) 

This equation is discussed in the appendix. 

4. The effect of the current on eddy stability 

gives: 
The effect of the current a(y) is now discussed. The order e stability equation (7 )  

( 1 1 )  
1 1 
r r 

@,Ad, + w,Ad, +- ar#ao Ad,  +- K2ar# aod, - a’(A + K 2 )  a$, = 0, 

where w, = ini. 
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It will now be shown that w, = - w:. A slightly modified version of the second order 
perturbation theory is used, multiplying equation ( 1  1)  by 

and integrating over the region 0 < r i 2,. Here 2, is the smallest zero of the 

function: i.e. 

One could also see from (10) that d(2,) = 0 (see appendix). We then obtain 

1 + rQi/m ar$ 
1 + ~ , ~ ~ / m a ~ + ( z , )  = 0. 

+,a,$aeAdl+~k.aa,$a,d,-a'(A+ 1 K 2 )  axdo}. 

Some general properties of partial integration are used, i.e. the fact that a,$(r) = 0 
and that A .  a, = 8,. A, This gives: 

d,* Ado d,* a'(A + K2) axdo 
Qi + (m/r) a r $  

- 
Qi + (m/ r )  8, $ + w1 

The first two terms on the left-hand side of the integral compensate each others 
exactly because of the properties of (10) so we have 

because of ( I  0) and (7).  Calling 

we have 
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The first integral of F is zero, being the integral of a function of r and of y multiplied 
by x ,  over a symmetric domain around the y axis. Then the real part of w1 is also zero 
as in the E = 0 case. 

To summarize we can say that the shape of our steady solution can be varied by 
small time dependent perturbations. The system is moreover stable to  the restricted 
class of perturbations with dimensions smaller than the eddy. A further nonlinear 
study of stability b la Liaponov is now in progress. 

Thanks are due to  Dr Reznik for suggesting the problem and Professors Hendershott, 
Einaudi, Zirilli, Sutera, Lalas for useful criticism. This work was supported by a grant 
from CNR-Progetho Finalizzato Oceanografia. 

Appendix 

the %? region, where ar# + 0. 
Some properties of the solution of (9), in the case Q, = 0 are now discussed, inside 

The equation is now 

a,<= 0, r = 0 
C =  0, r = R,. 

Clearly the quantity 1 +rQ,/ma,$ plays an important role in this equation. If Qi /m 
is positive or negative, large or small, the quantity 1 +rQi/rna,# has positive or 
negative values. Its zeros 2, define intervals I,, in the 0 ,< r < co axis, where 

1 +rQ,/ma,$ 

is alternatively positive or negative. It can be shown (Jorgens 1970) that this equation 
has a solution if and only if S(r) is zero at r = 2,. 

So let us assume that in the most central interval, I, (0 6 r < 2,) the function is 
positive. In  the next interval 1, (2, ,< r ,< 2,) 1 + rQi/m8, $ is negative and also 

Then either do has an infinite kinetic energy or we must assume that do = 0 in the Il 
interval. By repeating this description for various I,, we can be sure that do $. 0 
only in the intervals where 1 + r Q J m  a,.# > 0 and that do = 0 a t  r = 2,. 

The equation is then 

& , ( = O ,  r = O  

[ = O ,  r = Z o < R o  

for the most central region. 
The explicit values of Qi and <(r) can eventually be found numerically. 
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